

ACR SSO Authentication Service

Developers Guide

Version 1.5

Revision History

Date Version Description

01/29/2015 1.0 Authentication using NRDR account

11/23/2015 1.1
Replaced end point url from
https://secureauth01vm.acr.org/secureauth5 to
https://acr-id-test.acr.org/NRDR-UserLogin

Added Appendix A – Scope values

10/24/2017 1.2 Mandatory ‘offline_access’ scope item was added to
support SecureAuth 9.0

11/29/2017 1.3
prompt=consent parameter was added to
Authentication URL to keep backward compatibility
with SecureAuth 8.0

https://secureauth01vm.acr.org/secureauth5
https://secureauth01vm.acr.org/secureauth5
https://secureauth01vm.acr.org/secureauth5
https://acr-id-test.acr.org/NRDR-UserLogin
https://acr-id-test.acr.org/NRDR-UserLogin

12/11/2018 1.4 Added scope ‘nmd_data_submission’

5 May 2020 1.5 The service name as changed to ACR SSO.

OKTA compatibility changes:
1. OKTA Documentation links Provided
2. Breaking change: Authentication and Token

Endpoints URL has changed and is the same
for both production and test use.

3. “prompt” parameter isn’t required
4. Breaking change: “state” parameter is

required
5. Scope claim value format has changed
6. Token Endpoint always returns Access and ID

Tokens

The change required on the client side:

1. Update authentication and token URLs
2. Provide “state” parameter value in

authentication request.

Background
The document describes the way ACR SSO authentication service can be used to authenticate users and
provide access to external secured services.

ACR SSO Authentication service implements OpenID Connect protocol. It allows Clients to verify the
identity of the End-User based on the authentication performed by an Authorization Server, as well as to
obtain basic profile information about the End-User in an interoperable and REST-like manner. OpenID
Connect allows clients of all types, including Web-based, mobile, and JavaScript clients, to request and
receive information about authenticated sessions and end-users. It is an extension on top of OAuth 2.0
authorization framework.

The service is based on OpenID Connect implementation by OKTA: www.okta.com. It is fully OpenID
Connect certified solution. Detailed documentation and code samples can be found here:
https://developer.okta.com/authentication-guide/. https://developer.okta.com/authentication-
guide/implementing-authentication/auth-code/

Client Application Registration
Client application must be registered at Authorization Server before it can start sending authentication
requests. Client application owner must provide

1. Application name. The name must be human readable. This name will be displayed to end-user
during authentication process.

2. Redirect URL. This is redirection URI to which the response will be sent.

http://www.okta.com/
http://www.okta.com/
https://developer.okta.com/authentication-guide/
https://developer.okta.com/authentication-guide/
https://developer.okta.com/authentication-guide/implementing-authentication/auth-code/
https://developer.okta.com/authentication-guide/implementing-authentication/auth-code/
https://developer.okta.com/authentication-guide/implementing-authentication/auth-code/

The client application owner will be provided with Client ID and Client Secret. These values along with
Redirect URL constitute client application credentials, which are used in authentication process to
validate application authenticity. Client Secret must be handled with policies similar to ones applied to

organization system administrator password. Please note the client_id must consist of
alphanumeric characters or the following special characters: $-_.+!*'(),. It must contain
between six and 100 characters and must not be the reserved word: ALL_CLIENTS. The
client_secret must consist of printable characters that are defined in the OAuth 2.0 Specs and
must contain between 14 and 100 characters.

ACR ID Account Authorization quick guide

Authentication steps:

1. End-user authentication. This is done by sending the User Agent to the Authorization Server's
Authorization Endpoint. Request example:

GET https://sso.acr.org/oauth2/default/v1/authorize?
 client_id=1f5f39524f224df084520a2faa9a9275
 &redirect_uri=https%3a%2f%2flocalhost%3a44306%2fAuthCallback
 &response_type=code
 &scope=openid%20offline_access%20grid_exam_submission
 &state=6rrVSW20MU2rRGyoiMCceiRT

https://sso.acr.org/oauth2/default/v1/authorize - Authorization Endpoint URL address. client_id
– Client ID value.
redirect_uri – callback url where authentication result will be send. response_type
– must be “code”.
scope – rights to be requested. “openid” and ‘offline_access’ are required. The others depend on actual
rights required, see Appendix A. state – custom client application data

Client Web
Application

Authorization
Service

Client Background
Application

(1) End-User Authentication Request

(2) Refresh Token Request

Send Refresh Token

Authorization Code response

Token Response

(3) Access Token Request
Access Token Response

Secured
Service

Service call with Bearer Authorization

https://tools.ietf.org/html/rfc6749#appendix-A
https://tools.ietf.org/html/rfc6749#appendix-A
https://tools.ietf.org/html/rfc6749#appendix-A
https://tools.ietf.org/html/rfc6749#appendix-A

Response example

HTTP/1.1 302 Found
Location: https://localhost:44306/AuthCallback?

code=7B6bhNW5Ro9WgRj0
 &state=6rrVSW20MU2rRGyoiMCceiRT

code – authentication code

2. Token request. This is done by sending HTTP request to the Authorization Server's Token
Endpoint.

Request example:

POST https://sso.acr.org/oauth2/default/v1/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code &code=7B6bhNW5Ro…64Pszfg%253d%253d
 &redirect_uri=https%3A%2F%2Flocalhost%3A44306%2FAuthCallback
 &client_id=1f5f39524f224df084520a2faa9a9275
 &client_secret=6295475514294cbeaf7a09843bf3e17b

https://sso.acr.org/oauth2/default/v1/token - Token Endpoint URL address.
grant_type – must be “authorization_code” code –
authorization code received in previous call.
redirect_uri – the same as in previous call
client_id – Client ID value client_secret –
Client Secret value

Response example (the tokens are shortened for display purpose) :
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "access_token":"eyJ0eXAiOiJKV1QiLCJhb...xP9qQkeiizKQ",
 "expires_in":300,
 "id_token":"eyJ0e...s4vsZe351hyJvQ9Z0cyOa1mBfyg",
 "refresh_token":"3ahX1k7IrY...oEIWdIEa7Aqz4m7eImfHK5RdF",
 "scope":”offline_access openid grid_exam_submission”,
 "token_type":"Bearer"
}

Access token can be used to call secured services using Bearer Authentication. Refresh token can be
stored in order to reissue new access tokens later.

3. Reissue access token. This is done by sending HTTP POST request to the Authorization Server's
Token Endpoint.

Request example:

POST https://sso.acr.org/oauth2/default/v1/token HTTP/1.1 Content-Type:
application/x-www-form-urlencoded
 grant_type=refresh_token

&refresh_token=3ahX1k7IrY...oEIWdIEa7Aqz4m7eImfHK5RdF
&client_id=1f5f39524f224df084520a2faa9a9275

https://localhost:44306/AuthCallback
https://localhost:44306/AuthCallback
https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token

&client_secret=6295475514294cbeaf7a09843bf3e17b

https://sso.acr.org/oauth2/default/v1/token - is token endpoint URL address.
refresh_token – refresh token value received previously
client_id – Client ID value. client_secret – Client Secret
value.

Response example:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{

"access_token":"eyJ0eXAiOiJ…WQdGAyMg",
"expires_in":172792,
"id_token":"eyJ0e...s4vsZe351hyJvQ9Z0cyOa1mBfyg",
"refresh_token":"3ahX1k7IrYZAVu…%3d%3d",
"scope":”offline_access openid grid_exam_submission”,
"token_type":"Bearer"

}

The response is the same as in step 2.

Detailed steps description can be found below.

Offline authentication flow detailed description
This flow allows obtaining Authentication Token that grants access to secured resources even when
enduser is not present (offline mode).

The overall authentication process includes two separate steps (the steps can be implemented by
different applications).

The first step is to obtain refresh token. This step requires end-user’s presence. It includes two steps:

1. End-user authentication, which results Authorization Code to be received.

2. Refresh token request

The second step is to request access token. This step does not require end-user’s presence. A
background application can get new valid access token and start using it for secured resources calling.

1. Authentication request
The Authorization Endpoint performs Authentication of the End-User. This is done by sending the User
Agent to the Authorization Server's Authorization Endpoint for Authentication and Authorization, using
request parameters defined by OAuth 2.0 and additional parameters and parameter values defined by
OpenID Connect.

Authentication endpoint request can contain the following request parameters:

scope

REQUIRED. Requests MUST contain at least the “openid” scope value. Other scope values may be
present. The other scopes are required, when client application will use access tokens to access secured
resources. “offline_access” scope is required to enable the access tokens to be renewed with Refresh

https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token

Token. The request must contain all corresponding scopes. Authentication server validates that the
client application has access to the corresponding resources. Multiple values can be provided as
spaceseparated list. Example: “openid offline_access grid_exam_submission” response_type

REQUIRED. Response Type value that determines the authorization processing flow to be used, including
what parameters are returned from the endpoints used. When using the Authorization Code Flow, this
value is “code”.

client_id

REQUIRED. Client Identifier obtained during the client application registration at the Authorization
Server.

redirect_uri

REQUIRED. Redirection URI to which the response will be sent. This URI MUST exactly match one of the
Redirection URI values for the Client pre-registered at the Authorization Server, with the matching
performed as described in Section 6.2.1 of [RFC3986] (Simple String Comparison). When using this flow,
the Redirection URI MUST use the https scheme. state

REQUIRED. Opaque value used to maintain state between the request and the callback. Typically,
CrossSite Request Forgery (CSRF, XSRF) mitigation is done by cryptographically binding the value of this
parameter with a browser cookie.

The following is the example request that User Agent should send to the Authorization Server (with line
wraps within values for display purposes only):

GET https://sso.acr.org/oauth2/default/v1/authorize?

 client_id=1f5f39524f224df084520a2faa9a9275
 &redirect_uri=https%3a%2f%2flocalhost%3a44306%2fAuthCallback
 &response_type=code
 &scope=openid%20offline_access%20grid_exam_submission
&state=6rrVSW20MU2rRGyoiMCceiRT

https://sso.acr.org/oauth2/default/v1/authorize - is the Authorization Endpoint URL address.

response_type=code – Authorization Code flow will be used

scope=openid%20offline_access%20grid_exam_submission – “openid” – is required for OpenID Connect

based authentication requests. “offline_access” – is required for Refresh Token flow to enable Access

Token to be renewed. Additionally, client application is going to access secured resources, which has

“grid_exam_submission” scope assigned. client_id=1f5f39524f224df084520a2faa9a9275 – Client ID

obtained during application registration. state=6rrVSW20MU2rRGyoiMCceiRT – Client Application

specific data

redirect_uri=https%3a%2f%2flocalhost%3a44306%2fAuthCallback – callback url, where response with
Authorization Code will be redirected to. Must exactly match to the value provided during client
application registration.The following is an example of successful response using this flow (with line
wraps within values for display purposes only):

HTTP/1.1 302 Found
Location: https://localhost:44306/AuthCallback?

code=7B6bhNW5Ro…64Pszfg%253d%253d
 &state=6rrVSW20MU2rRGyoiMCceiRT

https://localhost:44306/AuthCallback

https://localhost:44306/AuthCallback - is redirect URL provided in authentication request.

code=7B6bhNW5Ro… – Authorization Code

state=6rrVSW20MU2rRGyoiMCceiRT – Data, which provided in Authentication request by client
application.

2. Refresh Token Request
A Client application makes a Token Request by presenting its Authorization Grant (in the form of an
Authorization Code) to the Token Endpoint using the grant_type value “authorization_code”. The client
application MUST authenticate to the Token Endpoint using its credentials obtained during application
registration.

The Client sends the parameters to the Token Endpoint using the HTTP POST method and the Form
Serialization.

The following is an example of a Token Request (with line wraps within values for display purposes only):

POST https://sso.acr.org/oauth2/default/v1/token HTTP/1.1 Content-Type:
application/x-www-form-urlencoded

grant_type=authorization_code &code=7B6bhNW5Ro9WgRj0m
 &redirect_uri=https%3A%2F%2Flocalhost%3A44306%2FAuthCallback
 &client_id=1f5f39524f224df084520a2faa9a9275
 &client_secret=6295475514294cbeaf7a09843bf3e17b

https://sso.acr.org/oauth2/default/v1/token – is Token Endpoint URL address.

code=7B6bhNW5Ro9WgRj0m – Authorization Code obtained during initial end-user authentication
process using Authorization Code flow.

redirect_uri=https%3a%2f%2flocalhost%3a44306%2fAuthCallback – callback url, where response with

Authorization Code will be redirected to. Must exactly match to the value provided during client

client_id=1f5f39524f224df084520a2faa9a9275 – Client ID obtained during application registration.

client_secret=6295475514294cbeaf7a09843bf3e17b – Client Secret obtained during application
registration.

The Authorization Server returns a successful response after receiving and validating a valid and
authorized Token Request from the Client. The response includes Refresh Token, ID Token and Access
Token. The response data is json object (application/json media type).

The token_type response parameter value shall be “Bearer”.

The following is an example of successful response for token request (with the tokens values shortening
and line wraps within values for display purposes only):

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{

https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token

 "access_token":"eyJ0eXAiOiJKV1QiLCJhb...xP9qQkeiizKQ",
 "expires_in":86400,
 "id_token":"eyJ0e...s4vsZe351hyJvQ9Z0cyOa1mBfyg",
 "refresh_token":"3ahX1k7IrY...oEIWdIEa7Aqz4m7eImfHK5RdF",
 "scope":”offline_access openid grid_exam_submission” ,
 "token_type":"Bearer"
}

The response body contains json object. The object includes the following tokens:

1. Access token. The client application can use it to access secured resources right after the
token is received. It has short lifetime.

2. ID Token is a security token that contains Claims about the Authentication of an end-user by
an Authorization Server when using a Client, and potentially other requested Claims. The ID
Token is represented as a JSON Web Token (JWT). It has short lifetime as well.

3. Refresh Token is long lived token, which can be used to reissue new access token without
end-user presence (in background). This token must be handled with policies similar to ones,
which are used for user name and password handling.

The scope attribute represents the operations, that the client application can perform using the tokens
returned.

The client application can start accessing secured resources (which corresponds to the scopes) right after
the tokes were received. Additionally, it can persist refresh token and use it later to issue new access
tokens.

3. Access Token Request
To refresh an Access Token, the Client MUST authenticate to the Token Endpoint using its credentials.
The Client sends the parameters via HTTP POST to the Token Endpoint using Form Serialization.

The following is an example of a Refresh Request (with line wraps within values for display purposes
only):

POST https://sso.acr.org/oauth2/default/v1/token HTTP/1.1 Content-Type:
application/x-www-form-urlencoded
 grant_type=refresh_token

&refresh_token=3ahX1k7IrYoEIWdIEa7Aqz4m7eImfHK5RdF
&client_id=1f5f39524f224df084520a2faa9a9275
&client_secret=6295475514294cbeaf7a09843bf3e17b

https://sso.acr.org/oauth2/default/v1/token - is token endpoint URL address.
refresh_token – refresh token value received previously client_id=1f5f39524f224df084520a2faa9a9275
– Client ID obtained during application registration.
client_secret=6295475514294cbeaf7a09843bf3e17b – Client Secret obtained during application
registration.

Upon successful validation of the Refresh Token, the response body is the same Token Response as

in step 4.2.

The following is an example of a Refresh Response:

https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{

"access_token":"eyJ0eXAiOiJ…WQdGAyMg",
"expires_in":172792,
"id_token":"eyJ0e...s4vsZe351hyJvQ9Z0cyOa1mBfyg",
"refresh_token":"3ahX1k7IrYZAVu",
"scope":”offline_access openid grid_exam_submission” ,
"token_type":"Bearer"

}

The response body is json-object. It contains new Access Token, which can be used to access secured
services and renewed Refresh Token, which must be used for Access Token request next time.

Received Access Token can be used for secured services calling using Bearer Authorization.

Appendix A – Scope values

Scope Secure Resource
grid_exam_submission NRDR General Radiology Improvement Database (GRID)
lcsr_data_submission NRDR Lung Cancer Screening Registry (LCSR)
pqrs_data_submission NRDR Merit-Based Incentive Payment System (MIPS)
nmd_data_submission NRDR National Mammography Database (NMD)
ctc_data_submission NRDR CT Colonograpy Registry (CTC)
cdsr_data_submission NRDR Clinical Decision Support Registry (CDSR)

Appendix B – Service URLs

URL Description
https://sso.acr.org/oauth2/default/v1/authorize Authorization Endpoint
https://sso.acr.org/oauth2/default/v1/token Token Endpoint

https://sso.acr.org/oauth2/default/v1/token
https://sso.acr.org/oauth2/default/v1/token

	Revision History
	Background
	Client Application Registration
	ACR ID Account Authorization quick guide
	Offline authentication flow detailed description
	1. Authentication request
	scope
	client_id
	redirect_uri

	2. Refresh Token Request
	3. Access Token Request

	Appendix A – Scope values
	Appendix B – Service URLs

